International Advanced Research Journal in Science, Engineering and Technology

SITES

Smart And Innovative Technologies In Engineering And Sciences

Gyan Ganga College of Technology Vol. 3, Special Issue 4, November 2016

Fuzzy g**- Closed Sets

Jyoti Pandey Bajpai¹, S. S. Thakur²

Assistant Professor, Department of Applied Mathematics Jabalpur Engineering College Jabalpur India¹

Professor, Department of Applied Mathematics Jabalpur Engineering College Jabalpur India²

Abstract: In this Paper we introduce the concept of the fuzzy g*-closed set in fuzzy topological spaces. After the introduction of fuzzy sets by Zadeh in 1965 and fuzzy topology by Chang in 1967, several researches were conducted on the generalizations of the notions of fuzzy sets and fuzzy topology. In 1995, Thakur and Malviya extended the concept of g-closed sets in fuzzy topology. Many authors utilized fuzzy g-closed sets for the generalization of various fuzzy topological concepts in fuzzy topology. In 2010 Thakur and Mishra [9] introduced the concept of fuzzy g*-closed sets in fuzzy topology. In 2012 M. and Helen P. Introduced the concept of g**-closed sets in general topology. The present Paper extends the concept of g**-closed set due to Pauline M. and Helen P. In fuzzy topology and explore their study.

Keywords: Fuzzy topology, Fuzzy generalized closed sets, Fuzzy g**-closed set, Fuzzy g** -open set sets

I. INTRODUCTION

The concept of fuzzy sets and fuzzy set operations were **DEFINITION 2.1:** A fuzzy set A of (X,τ) is called: first introduced by Zadeh in his classical paper [11]. Subsequently several authors have applied various basic concepts from general topology to fuzzy sets and developed the theory of Fuzzy topological spaces.

The notion of fuzzy sets naturally plays a very significant role in the study of fuzzy topology introduced by Chang [3].

Pu and Liu [5] introduced the concept of quasicoincidence and q-neighbourhoods by which the extensions of mappings in fuzzy setting can very interestingly and effectively be carried out. The aim of this paper is to introduce the notion of fuzzy g^{**} -closed sets, an alternative generalization of fuzzy g- closed set in fuzzy topological spaces.

II. PRELIMINARIES

A family τ of fuzzy sets of X is called a fuzzy topology [3] on X if 0 and 1 belong to τ and τ is closed with respect to arbitrary union and finite intersection. The members of τ are called fuzzy open sets and their complements are fuzzy closed sets.

Throughout this paper, (X, τ) , (Y, σ) and (Z, γ) (or simply X,Y and Z) always mean fuzzy topological spaces on which no separation axioms are assumed unless otherwise mentioned .

For a fuzzy set A of (X,τ) , Cl(A) and Int(A) denote the closure and the interior of A respectively. By 0_x and 1_x we will mean the fuzzy sets with constant function 0 (Zero quasi-coincident with the fuzzy set A denoted by $x_p q$ A iff function) and 1 (Unit function) respectively.

The following definitions are useful in the sequel.

DOI 10.17148/IARJSET

(1). (Fuzzy semiopen (briefly, Fs-open) if $A \subseteq Cl(Int(A))$ and a fuzzy semiclosed (Briefly, Fs-closed) if Int(Cl(A)) $\subseteq A[1];$

(2). (Fuzzy preopen (briefly, Fp-open) if $A \subseteq Int(Cl(A))$ and a fuzzy preclosed (briefly, Fp-closed) if Cl(Int(A)) ⊆A [2];

(3). Fuzzy α -open (briefly, F α -open) if A \subseteq Int Cl(Int(A)) and a fuzzy α -closed (briefly, F α -closed) if $ClInt(Cl(A)) \subseteq A$ [2];

(4). Fuzzy semi-preopen (briefly, Fsp-open) if A \subseteq ClInt(Cl(A)) and a fuzzy semi- preclosed (briefly, Fspclosed) if $IntCl(Int(A)) \subseteq A$ [6].

DEFINITION 2.2: A fuzzy set A of (X, τ) is called: (1) Fuzzy generalized closed (briefly, Fg-closed) if Cl(A)

 \subseteq H, whenever A \subseteq H and H is fuzzy open set in X.[8]

Fg**-closed) (2) Fuzzy g*-closed (briefly, if $Cl(A) \subseteq H$, whenever $A \subseteq H$ and H is fuzzy g- open set in X .[9]

(3) Fuzzy regular generalized closed set (briefly, Frgclosed) if $Cl(A) \subseteq H$, whenever $A \subseteq H$ and H is fuzzy regular open set in X. [7]

DEFINITION 2.3: A fuzzy point $x_p \in A$ is said to be p+A(x) > 1. A fuzzy set A is quasi-coincident with a fuzzy set B denoted by A q B iff there exists $x \in X$ such

International Advanced Research Journal in Science, Engineering and Technology

closed.

SITES

Smart And Innovative Technologies In Engineering And Sciences

Gyan Ganga College of Technology

Vol. 3, Special Issue 4, November 2016

that A(x) + B(x) > 1. If A and B are not quasi-coincident **EXAMPLE 3.2:** Let $X = \{a, b\}, \mathfrak{J} = \{0, A, B, D, 1\}$ and then we write ⁷ A q B. Note that $A \subseteq B \Leftrightarrow {}^{7}A q B^{C}$ [4].

III.FUZZY G^{}-CLOSED SETS**

DEFINITION 3.1: A fuzzy set A of fuzzy topological spaces (X,\mathfrak{J}) is called a fuzzy g**-closed set if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy g*-open.

THEOREM 3.1: Every fuzzy closed set is fuzzy g**closed set.

Proof: Let A is fuzzy closed set of topological space (X,\mathfrak{J}) then A = cl(A). Now we have to prove that A is

fuzzy g^{**} - closed set. Let A \subseteq U and U is fuzzy g-open which implies that $cl(A) \subseteq U$ Since A=cl(A) Therefore $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is fuzzy g-open Hence A is fuzzy g**-closed set.

REMARK 3.1: The converse of above theorem need not be true. For,

EXAMPLE 3.1: Let $X = \{a, b\}$ and $\Im = \{0, U, 1\}$. Where U(a) = 0.5 and U(b) = 0.4. Then fuzzy set A defined by

A(a) = 0.3, A(b) = 0.3 is fuzzy g^{**} -closed set but not a fuzzy closed set.

THEOREM 3.2: If a fuzzy set A of fuzzy topological Since every open set is g-open, U is g-open set of X. Now space (X, \Im) is both fuzzy open and fuzzy g^{**} - closed then it is fuzzy closed set.

 (X, \Im) is both fuzzy open and fuzzy g^{**} closed set. Since every fuzzy open set is g-open set, therefore A is fuzzy g-open set of fuzzy topological space (X, \Im) such that $A \subseteq A$ Now A is fuzzy g^{**}-closed set of topological space (X, \mathfrak{I}) then by definition of fuzzy g^{**} -closed set we have $cl(A) \subseteq A$. Since $A \subseteq cl(A)$ for every fuzzy set A. Therefore cl(A) = A . Thus A is fuzzy closed set in fuzzy topological space (X, \mathfrak{I}) .

THEOREM 3.3: Every fuzzy g*- closed set is fuzzy g**-closed set.

Proof: Let A is fuzzy g*- closed set of fuzzy topological space (X, \mathfrak{J}). We have to prove that A is fuzzy g^{**} - closed set .Let $A \subseteq U$ and U is fuzzy g*-open. Since every g*open set is g-open. Since U is fuzzy g-open Such that Let $A \subseteq U$ and U is regular open subset of X. $A \subseteq U$. Then by def of fuzzy g*-closed set cl(A) $\subseteq U$.Hence we have $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is g^* open.

Hence A is fuzzy g**-closed set.

REMARK 3.2: The converse of above theorem need not be true. For,

fuzzy sets A, B, D and H are defined as follows. A(a) = 0.2, A(b)=0.4B(a) = 0.6, B(b)=0.7; D(a)=0.4, D(b)=0.6 D H(a)=0.4, H(b)=0.5.Then H is fuzzy g** -closed set but it not fuzzy g*-

THEOREM 3.4: If a subset A of topological space (X, \Im) is both fuzzy open and fuzzy g**- closed then it is g*- closed set.

Proof: Suppose fuzzy set A of topological space (X, \mathfrak{I}) is both fuzzy open and fuzzy g**- closed set . Since every fuzzy open set is fuzzy g-open set, therefore A is fuzzy g-open subset of topological space (X, \Im) such that $A \subseteq A$.Now A is s g^{**}-closed set of fuzzy topological space (X, \mathfrak{I}) then $cl(A) \subseteq A$. Therefore $cl(A) \subseteq A$ whenever $A \subseteq A$ and A is fuzzy g-open in (X, \mathfrak{I}) . Thus A is fuzzy g*- closed set in fuzzy topological space (X, \mathfrak{I}) .

THEOREM 3.5: Every Fuzzy g**-closed set A of topological space (X, \mathfrak{I}) is Fuzzy g- closed set. Proof: Let A is fuzzy g**-closed set of topological space. We have to prove that A is fuzzy g-closed sets in (X, \mathfrak{I}) Let $A \subseteq U$ and U is open subset of X.

A is g^{**} -closed set of topological space (X, \mathfrak{I}) then by definition of g^{**} -closed set we have $cl(A) \subseteq U$ we have **Proof**: Suppose a fuzzy set A of fuzzy topological space $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is -open in (X, \mathfrak{I}) . Thus A is g- closed set in topological space (X, \mathfrak{I}) .

> **REMARK 3.3:** The converse of above theorem need not be true. For,

> **EXAMPLE 3.3:** Let $X = \{a, b\}$ and $\Im = \{0, U, 1\}$. Where U(a) = 0.4 and U(b) = 0.6. Then fuzzy set A defined by A(a) = 0.5, A(b)= 0.3 is fuzzy g -closed set but not a fuzzy g**- closed set.

> THEOREM 3.6: Every fuzzy g**-closed set A of topological space (X,\mathfrak{I}) is Fuzzy rg- closed set. Proof: Let A is fuzzy g**-closed set of topological space. We have to prove that A is fuzzy rg-closed sets in (X, \mathfrak{I})

Since every fuzzy regular open set is fuzzy open set and every fuzzy open set is fuzzy g-open. U is fuzzy g-open set of X. Now A is fuzzy g**-closed set of topological space (X, \Im) then by definition of fuzzy g^{**} -closed set we

have $cl(A) \subseteq U$. Therefore $cl(A) \subseteq U$ whenever A⊆ U and U is fuzzy regular open in (X, \mathfrak{I}) .

Thus A is fuzzy rg- closed set in topological space (X, \mathfrak{I}) .

International Advanced Research Journal in Science, Engineering and Technology

SITES

Smart And Innovative Technologies In Engineering And Sciences

Gyan Ganga College of Technology

Vol. 3, Special Issue 4, November 2016

REMARK 3.4: The converse of above theorem need not **THEOREM 3.9:** Every fuzzy open set is fuzzy g**be true. For, open.

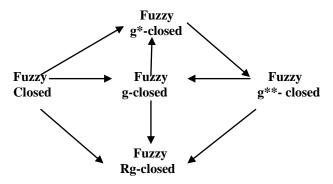
fuzzy sets A, B and H are defined as follows. A(a) = 0.3, A(b)=0.4

B(a) = 0.5, B(b)=0.6;

H(a)=0.4, H(b)=0.5.

Then H is fuzzy rg -closed set but it not fuzzy g**-closed

REMARK 3.5: Theorem 3.1, 3.3, 3.5 and 3.6 reveals the following diagram of implication.



THEOREM 3.7: A fuzzy set A of fuzzy topological space (X, \mathfrak{I}) is fuzzy g^{**} -closed if and only if $7 \text{ A q B} \Rightarrow 7 \text{ Cl (A) qB}$ for every fuzzy g* -closed set B of X

Proof: Suppose that A is a fuzzy g** - closed set of X such that $7A \neq B$ Then $A \subseteq B^c$ and B^c is a fuzzy g*open set X. which implies that $Cl(A) \subseteq B^{c}$ since A is fuzzy g** -closed. Hence 7 Cl (A) qB

Conversely, Let U be a fuzzy g*- open set in X such that A \subseteq U. Then 7A q U^c and U^c is fuzzy g*-closed set in X. Then by hypothesis 7 Cl (A) qU^c which implies that $cl(A) \subseteq U$. Hence A is fuzzy g^{**} -closed set.

THEOREM 3.8: If A is a fuzzy g** - closed set in fuzzy topological space (X,\mathfrak{J}) and $A \subseteq B \subseteq cl$ (A), then B is fuzzy g **- closed set in fuzzy topological space (X,3)

Proof: Let A be a fuzzy g** - closed set in fuzzy topological space (X, \mathfrak{I}) Let $B \subseteq U$ where U is a fuzzy g^{*-} open se in X. Then A \subseteq U. Since A is fuzzy **Proof:** Necessity: Let A is fuzzy g^{**}-open set. F is g^{**} - closed set, it follows that Cl (A) \subseteq U. Now fuzzy g^* -closed set such that $F \subseteq A$. Then F^c is g^* -open $B \subseteq cl(A)$ which implies that $cl(B) \subseteq cl(A) \subseteq U$ Hence B is fuzzy g**-closed set in X.

DEFINITION 3.2: A fuzzy set A of fuzzy topological space (X, \Im) is said to be fuzzy g**-open set in A if its complement A^c is fuzzy g**-closed.

EXAMPLE 3.4: Let $X = \{a, b\}$, $\mathfrak{I} = \{0, A, B, 1\}$ and **Proof** – Let A is fuzzy open set in fuzzy topological space (X, \mathfrak{I}) .

> Then A^{C} is fuzzy closed set in fuzzy topological space(X, **I**).

> Now by theorem 3.1. Every fuzzy closed set is fuzzy g**closed.

Therefore A^c is fuzzy g**-closed set.

Hence By definition 4.1 A is fuzzy g^{**} -open set in (X, \mathfrak{I}).

REMARK 3.6: The converse of above theorem need not be true. For,

EXAMPLE 3.5: Let $X = \{a, b\}$ and $\Im = \{0, U, 1\}$. Where

U(a) = 0.5 and

U(b) = 0.4

Then fuzzy set A defined by

A(a) = 0.7, A(b)= 0.6 is fuzzy g^{**} -open set but not a fuzzy open set.

THEOREM 3.10: Every fuzzy g*-open set is fuzzy g**-open.

Proof: Let A is fuzzy g*-open set in topological space (X, J).

Then A^C is fuzzy g*-closed set in fuzzy topological space (X, J).

Now by theorem 3.3 every fuzzy g*-closed set is fuzzy g**-closed. Therefore A^c is fuzzy g**-closed set.

Hence By definition 4.1 A is fuzzy g^{**} -open set in (X, \mathfrak{I}).

REMARK 3.7: The converse of above theorem need not be true. For,

EXAMPLE 3.6: Let $X = \{a, b, c\}$ and $\mathfrak{I} = \{\emptyset, X, \{a\}, \}$

 $\{a, b\}\}$. where

U(a) = 0.3 and

U(b) = 0.6

Let $A = \{a, c\}$ then A is fuzzy g^{**} -open set but not a fuzzy g*-open set.

THEOREM 3.11: A set A of fuzzy topological space (X, \mathfrak{I}) is fuzzy g^{**}-open if and only if $F \subseteq cl(A)$ whenever F is fuzzy g^* -closed and $F \subseteq A$

set such that $A^c \subseteq F^c$ Now by hypothesis A^c is fuzzy g^{**} closed set .

We have $cl((A^c) \subseteq F^c$ which implies that $F \subseteq cl((A))$

Sufficiency: Let $F \subseteq cl(A)$ whenever F is g*-closed and $F \subseteq A$

International Advanced Research Journal in Science, Engineering and Technology

SITES

Smart And Innovative Technologies In Engineering And Sciences

Gyan Ganga College of Technology Vol. 3, Special Issue 4, November 2016

We have to prove that A is fuzzy g^{**} -open. Let U is a fuzzy g^{*} -open set of X such that $A^{c} \subseteq U$. Then U^{c} is fuzzy g^{*} -closed set such that $U^{c} \subseteq A$. Therefore by hypothesis $U^{c} \subseteq cl(A)$ which implies that $cl(A)^{c} \subseteq U$ we have $cl((A^{c})) \subseteq U$ where $A^{c} \subseteq U$ and U is fuzzy g^{*} -open.

Hence A^c is fuzzy g**-closed. Thus A is fuzzy g**-open.

THEOREM 3.12: Let A is fuzzy g^{**} -closed set of X and int(A)) $\subseteq B \subseteq A$. Then B is fuzzy g^{**} -open set.

Proof: Let A is fuzzy g^{**} -open set in X. such that int(A) \subseteq B \subseteq A which implies that $A^c \subseteq B^c \subseteq (int(A)^c = cl(A^c)$ Now A^c is s fuzzy g^{**} -closed set such that $A^c \subseteq B^c \subseteq cl(A^c)$) Then By theorem 3.7 B^c is fuzzy g^{**} closed set Hence B is fuzzy g^{**} -open set.

IV.CONCLUSION

The theory of g-closed sets plays an important role in general topology. Since its inception many weak and strong forms of g-closed sets have been introduced in general topology as well as fuzzy topology. The present paper investigated a new weak form of fuzzy g-closed sets called fuzzy g**-closed sets which contain the classes of fuzzy closed sets and fuzzy g*- closed sets and contained in the classes of fuzzy g-closed sets and fuzzy g*-closed sets and fuzzy rg-closets. Several properties and application of fuzzy g**-closed sets are studied. Many examples are given to justify the result.

ACKNOWLEDGMENT

The author would like to thank the referees for their valuable suggestions to improve the paper

REFERENCES

- [1]. K.K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl., 82, 14-32., (1981).
- [2] A.S. Bin Shahan, on fuzzy strong semicontinuity and fuzzy pre continuity Fuzzy Sets and Systems, 44, 303-308, 1991.
- [3] C.L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968).
- [4] M. Pauline and P. Helen, g ** -closed sets in topological spaces, International Journal of Mathematical Archive 3(5), 2005-2019, 2012.
- [5] P.M. Pu. And Y. M.Liu, Fuzzy topology I, Neighbourhood structure of Fuzzy point and More –Smith convergence, J. Math. Anal. Appl., 76, 571-599, 1980.
- [6] S. S. Thakur and S.Singh: On fuzzy semipreopen and fuzzy semiprecontinuity, Fuzzy Sets and Systems, 98(3) 383-391, 1998
- [7] S.S. Thakur and R. Khare: On fuzzy regular generalized closed sets. Varāhmihir J. Math. Sci., 3(1), 65-70, 2003.
- [8] S.S. Thakur. and R. Malviya, Generalized closed sets in Fuzzy topology. Math. Notae. 38, 137-140, 1995.
- [9] S.S. Thakur and M. Mishra, Fuzzy g^{*}-closed sets. International Journal of Theoretical & Applied Sciences. 2(2), 28-29, 2010.
- [10] T.H. Yalvac, Semi interior and Semi closure of fuzzy sets, J. Math. Anal. Appl.132 356-364. 1988.
- [11] L.A. Zadeh : Fuzzy sets , Inform and Control, 8,338-353, 1965.

Dr. Jyoti Pandey Bajpai is working as Assistant Professor in department of Applied Mathematics, Jabalpur Engineering College, Jabalpur. she is an author of one book on Engineering Mathematics. She has published 26

research papers in National and International journals. Her subject of interest includes fuzzy topology, Intuitionistic Fuzzy Topology, Operation Research and Optimization.

Dr. S. S. Thakur is a professor and Head, Department of Applied Mathematics Jabalpur Engineering College, Jabalpur. He has published more than 225 research papers and supervised twenty five Ph. D. students.

He is a member of editorial board and served as referee of many international Journals. His current work includes Fuzzy Topology, Fuzzy Control Theory, Fuzzy Databases and Fuzzy Optimizations.